Note
Go to the end to download the full example code
Using the ExecuTorch SDK to Profile a Model¶
Author: Jack Khuu
The ExecuTorch SDK is a set of tools designed to provide users with the ability to profile, debug, and visualize ExecuTorch models.
This tutorial will show a full end-to-end flow of how to utilize the SDK. Specifically, it will:
Generate the artifacts consumed by the SDK (ETRecord, ETDump).
Create an Inspector class consuming these artifacts.
Utilize the Inspector class to analyze the model.
Prerequisites¶
To run this tutorial, you’ll first need to Set up your ExecuTorch environment.
Generate ETRecord (Optional)¶
The first step is to generate an ETRecord
. ETRecord
contains model
graphs and metadata for linking runtime results (such as profiling) to
the eager model. This is generated via executorch.sdk.generate_etrecord
.
executorch.sdk.generate_etrecord
takes in an output file path (str), the
edge dialect model (EdgeProgramManager
), the ExecuTorch dialect model
(ExecutorchProgramManager
), and an optional dictionary of additional models
In this tutorial, an example model (shown below) is used to demonstrate.
import copy
import torch
import torch.nn as nn
import torch.nn.functional as F
from executorch.exir import (
EdgeCompileConfig,
EdgeProgramManager,
ExecutorchProgramManager,
to_edge,
)
from executorch.sdk import generate_etrecord
from torch.export import export, ExportedProgram
# Generate Model
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
# 1 input image channel, 6 output channels, 5x5 square convolution
# kernel
self.conv1 = nn.Conv2d(1, 6, 5)
self.conv2 = nn.Conv2d(6, 16, 5)
# an affine operation: y = Wx + b
self.fc1 = nn.Linear(16 * 5 * 5, 120) # 5*5 from image dimension
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
# Max pooling over a (2, 2) window
x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2))
# If the size is a square, you can specify with a single number
x = F.max_pool2d(F.relu(self.conv2(x)), 2)
x = torch.flatten(x, 1) # flatten all dimensions except the batch dimension
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
model = Net()
aten_model: ExportedProgram = export(
model,
(torch.randn(1, 1, 32, 32),),
)
edge_program_manager: EdgeProgramManager = to_edge(
aten_model, compile_config=EdgeCompileConfig(_check_ir_validity=True)
)
edge_program_manager_copy = copy.deepcopy(edge_program_manager)
et_program_manager: ExecutorchProgramManager = edge_program_manager.to_executorch()
# Generate ETRecord
etrecord_path = "etrecord.bin"
generate_etrecord(etrecord_path, edge_program_manager_copy, et_program_manager)
Warning
Users should do a deepcopy of the output of to_edge() and pass in the deepcopy to the generate_etrecord API. This is needed because the subsequent call, to_executorch(), does an in-place mutation and will lose debug data in the process.
Generate ETDump¶
Next step is to generate an ETDump
. ETDump
contains runtime results
from executing a Bundled Program Model.
In this tutorial, a Bundled Program is created from the example model above.
import torch
from executorch.bundled_program.config import MethodTestCase, MethodTestSuite
from executorch.bundled_program.core import create_bundled_program
from executorch.bundled_program.serialize import (
serialize_from_bundled_program_to_flatbuffer,
)
from executorch.exir import to_edge
from torch.export import export
# Step 1: ExecuTorch Program Export
m_name = "forward"
method_graphs = {m_name: export(getattr(model, m_name), (torch.randn(1, 1, 32, 32),))}
# Step 2: Construct Method Test Suites
inputs = [[torch.randn(1, 1, 32, 32)] for _ in range(2)]
method_test_suites = [
MethodTestSuite(
method_name=m_name,
test_cases=[
MethodTestCase(inputs=inp, expected_outputs=getattr(model, m_name)(*inp))
for inp in inputs
],
)
]
# Step 3: Generate BundledProgram
program = to_edge(method_graphs).to_executorch().executorch_program
bundled_program = create_bundled_program(program, method_test_suites)
# Step 4: Serialize BundledProgram to flatbuffer.
serialized_bundled_program = serialize_from_bundled_program_to_flatbuffer(
bundled_program
)
save_path = "bundled_program.bp"
with open(save_path, "wb") as f:
f.write(serialized_bundled_program)
We provide 2 ways of executing the Bundled Model to generate the ETDump
:
Option 1:
Use Buck (follow these instructions to set up buck):
cd executorch
buck2 run -c executorch.event_tracer_enabled=true examples/sdk/sdk_example_runner:sdk_example_runner -- --bundled_program_path <bundled_program>
Option 2:
Use CMake (follow these instructions to set up cmake):
cd executorch
rm -rf cmake-out && mkdir cmake-out && cd cmake-out && cmake -DBUCK2=buck2 -DEXECUTORCH_BUILD_SDK=1 -DEXECUTORCH_BUILD_EXTENSION_DATA_LOADER=1 ..
cd ..
cmake --build cmake-out -j8 -t sdk_example_runner
./cmake-out/examples/sdk/sdk_example_runner --bundled_program_path <bundled_program>
Creating an Inspector¶
Final step is to create the Inspector
by passing in the artifact paths.
Inspector takes the runtime results from ETDump
and correlates them to
the operators of the Edge Dialect Graph.
Recall: An ETRecord
is not required. If an ETRecord
is not provided,
the Inspector will show runtime results without operator correlation.
To visualize all runtime events, call Inspector’s print_data_tabular
.
from executorch.sdk import Inspector
etdump_path = "etdump.etdp"
inspector = Inspector(etdump_path=etdump_path, etrecord_path=etrecord_path)
inspector.print_data_tabular()
Analyzing with an Inspector¶
Inspector
provides 2 ways of accessing ingested information: EventBlocks
and DataFrames
. These mediums give users the ability to perform custom
analysis about their model performance.
Below are examples usages, with both EventBlock
and DataFrame
approaches.
# Set Up
import pprint as pp
import pandas as pd
pd.set_option("display.max_colwidth", None)
pd.set_option("display.max_columns", None)
If a user wants the raw profiling results, they would do something similar to
finding the raw runtime data of an addmm.out
event.
for event_block in inspector.event_blocks:
# Via EventBlocks
for event in event_block.events:
if event.name == "native_call_addmm.out":
print(event.name, event.perf_data.raw)
# Via Dataframe
df = event_block.to_dataframe()
df = df[df.event_name == "native_call_addmm.out"]
print(df[["event_name", "raw"]])
print()
If a user wants to trace an operator back to their model code, they would do
something similar to finding the module hierarchy and stack trace of the
slowest convolution.out
call.
for event_block in inspector.event_blocks:
# Via EventBlocks
slowest = None
for event in event_block.events:
if event.name == "native_call_convolution.out":
if slowest is None or event.perf_data.p50 > slowest.perf_data.p50:
slowest = event
if slowest is not None:
print(slowest.name)
print()
pp.pprint(slowest.stack_traces)
print()
pp.pprint(slowest.module_hierarchy)
# Via Dataframe
df = event_block.to_dataframe()
df = df[df.event_name == "native_call_convolution.out"]
if len(df) > 0:
slowest = df.loc[df["p50"].idxmax()]
print(slowest.event_name)
print()
pp.pprint(slowest.stack_traces)
print()
pp.pprint(slowest.module_hierarchy)
If a user wants the total runtime of a module, they can use
find_total_for_module
.
print(inspector.find_total_for_module("L__self__"))
print(inspector.find_total_for_module("L__self___conv2"))
Note: find_total_for_module
is a special first class method of
Inspector